Posts Tagged ‘drugs’

Patient safety: when doctors are the problem

July 31, 2010  |  General  |  No Comments

We’ve always know that hospitals can be dangerous places for patients. In a landmark study some years ago, the Institute of Medicine, a part of the National Academy of Sciences, demonstrated just how dangerous they can be; anywhere from 50,000 to 100,000 people die annually from preventable errors. How are we doing at reducing that grim statistic? The answer is that we are making some progress, but there remain serious roadblocks.

The deaths studied by the Institute of Medicine came from a whole host of causes, and many of these causes are complex and difficult to address. But it turns out that one cause — serious infections from central venous catheters — can be easily improved. We can’t prevent all of these infections, but we can dramatically reduce them. The way to do this is absurdly simple and the lowest of low-tech: use a checklist that ensures basic procedural steps are followed in the correct order. Hospital safety guru Peter Pronovost demonstrated this some years ago. Checklists for all sorts of procedures are useful. Well-known medical author and surgeon Atul Gawande had even written a best-selling book about them. So what’s the problem? The answer is that the problem is often doctors and our medical culture. A recent editorial by Dr. Pronovost helps explain why. (The editorial is from the Journal of the American Medical Association, which requires a subscription. If anybody wants a copy, let me know.) Here’s the crux of the problem, as described by Dr. Pronovost:

“Although most physicians and hospital leaders genuinely want to prevent harming patients, and many physicians practice good teamwork, this view of not questioning physicians is pervasive. Physicians are often rushed, sleep deprived, and overworked and are offered limited training about teamwork and conflict resolution. The practice setting is not always conducive to completing recommended practice and anything that takes extra time for one patient (eg, searching for supplies) detracts from the care of others. Physicians also may not receive feedback on individual performance or hospital infection rates. Social, cultural, educational, and financial differences between physicians and nurses also may inhibit some nurses from speaking up, even when physicians may welcome such feedback.

Moreover, many physicians have not accepted that fallibilities are part of the human condition. Thus, when a nurse questions them, it causes embarrassment or shame. Clinicians are sometimes arrogant, believing they have all the answers, dismissing team input, responding aggressively when questioned. The line between autonomy and arrogance is fine and nuanced. Society has benefited tremendously from physician autonomy and innovation, producing new drugs, devices, therapies, operations, and anesthetics. Therefore, autonomy and innovation must be continued. However, autonomy becomes arrogance when actions are mindless and not mindful, when something is done simply because a physician demands it, when a clinician does not learn from mistakes, and when experimentation occurs without a clear rationale or testable hypothesis. Too often autonomy is mindless and driven by arrogance. When placing a catheter, reliability not autonomy is needed.

As Pogo said many years ago: “We have met the problem, and he is us.”

What causes diarrhea in children?

July 10, 2010  |  General  |  1 Comment

Here’s another excerpt from my new book, How Your Child Heals. It’s from the chapter on symptoms, and it’s about what causes diarrhea.

Diarrhea, the frequent passage of watery stools, is something with which most parents of small children are well acquainted. It is a common symptom because its most common causes, intestinal viruses, are all around us. There are many of these for a child’s immune system to meet as it matures. Each new encounter usually causes illness, but subsequent exposures often cause few or no problems. These viruses are highly infectious, so they spread easily wherever toddlers gather to share toys and cookies. The result is what doctors call gastroenteritis, a fancy term for an inflamed stomach and intestines.

Other things besides viruses can cause diarrhea, but most of these cause it in the same way intestinal viruses do — injuring the cells lining the intestines so they cannot do their job of absorbing the nutrients passing by them. A wide variety of food intolerances can also lead to diarrhea, often because the absorbing cells, though present in the intestine, are in some individuals unable to deal with a particular food properly. Common examples of this include a deficiency of the absorbing cells that process lactose, a type of sugar in dairy products, or a sensitivity to the proteins present in cow’s milk. Whatever the cause of the poor functioning of the absorbing cell lining, the result is often diarrhea. If there is significant stretching and squeezing going on in the intestine the child will often have cramping pain, too.

When the intestinal lining is injured, it cannot do its job of absorbing food. If a large amount of unabsorbed food makes it to the lower reaches of the small intestine, it draws water out of the intestinal wall. It also becomes excellent food for all the bacteria living there, and the action of the germs gorging themselves on this sudden feast produces even more substances that draw water into the intestine. When this mixture is dumped into the large intestine, the enormous mass of bacteria normally living there magnifies the effect. The large intestine can absorb quite a bit of water, but it can become overwhelmed by the volume of what it is being asked to take in. Plus, its lining cells may themselves be injured by the infection and be less able to do their job.

These things makes the stools watery. Diarrhea also means more frequent stools. The simple increase in the amount of material the intestines must deal with is one cause of the more frequent stools. Another is that most causes of diarrhea also speed up the transit time, the length of time it takes what a child swallows to pass all the way through.

There is another kind of diarrhea, one less common in children. This disorder is of the large intestine, the colon, and is called colitis because that word means an inflamed colon. It is typically caused by one of several varieties of infectious bacteria. Since the colon can become quite irritated and inflamed, the diarrhea of colitis often has blood in it from oozing off the intestinal wall. It is usually a more serious illness than simple gastroenteritis of the upper reaches of the intestine. This is why seeing blood in your child’s stools is a reason to visit or call the doctor, especially if your child has fever as well.

We have several ways to deal with diarrhea, the first of which is to do nothing other than make sure your child is getting enough fluid to replace that lost in the stools. This is how doctors usually handle the situation, because typical gastroenteritis is quite self-limited and will pass soon. When it does, the damaged absorbing cells very rapidly replace themselves on the villi and all is well. If it persists for many days, that is a reason to suspect something else is causing it.

Simple common sense teaches us we should not challenge the intestines of a child with diarrhea with large meals full of complex, difficult to absorb foods, because the poorer the absorption, the worse the diarrhea potential. Parents have known this for generations. This is the rationale for using smaller, more frequent meals of simple starches like rice and bread, or even of eliminating all solids for a day or so. There are several ways of approaching this issue, but many parents find out by trial and error which dietary manipulations work for their children and which ones do not.

We do have several drugs to treat diarrhea, most of which work by slowing down the transit time through the intestines. Lomotil is the brand-name of a commonly used one. These drugs affect the intestinal nerves that control how fast the intestines squeeze the food along, slowing down the process. They work well in adults, although you can easily see how it is possible to overshoot and end up with constipation. However, doctors rarely recommend these drugs for small children because, as with the nausea and vomiting medicines, the potential side effects outweigh any benefit of using them for a condition that usually quickly passes without treatment.

What causes nausea and vomiting?

June 18, 2010  |  General  |  5 Comments

Here’s another excerpt from my new book, How Your Child Heals. It’s from the chapter on symptoms, and it’s about what causes nausea and vomiting.

Most of us are familiar with nausea, that queasy feeling experience has taught us may soon be followed by vomiting. When that happens, we begin to feel a quiver at the base of our tongue and in the back of our throat. At this point we may be able to suppress the feeling enough to keep from vomiting by swallowing a few times or taking some deep breaths. If none of that works, we soon toss whatever is inside our stomach out through our mouths, after which the nausea is typically improved, at least for a short time. If there is nothing in our stomachs, we may still go through the vomiting reflex–the dry heaves.

Vomiting differs from mere spitting up, what parents of a baby often call a wet burp. Vomiting is a very forceful act involving contraction of powerful muscles in the stomach and abdomen. When a baby spits up it is because the muscular tissue at the junction between her stomach and the lower part of her esophagus is too lax to keep the food inside. We call that regurgitation or reflux of stomach contents. An older child or adult with heartburn is experiencing a version of the same thing, only usually the stomach contents do not make it all the way up into the mouth. Spitting up is simply a local event in the lower esophagus, with the stomach contents running back up the wrong way for a moment. In contrast, vomiting is a complex reflex in which several parts of the brain and the digestive system need to communicate with each other and coordinate what they are doing.

Both nausea and vomiting are controlled by a place in the lower part of the brain in the region we call the brain stem. Regulatory centers for many of our basic reflexes, like the one that keeps us breathing, are located nearby. This fact tells us that vomiting is an ancient and primitive reflex that has been with us for a very long time. Doctors are notorious for devising esoteric and fancy names for anatomic places, but this spot in the brain is called by a very practical term–the vomiting center.

Many things can awaken the vomiting center and cause it to do its job. Signals from the higher centers in the brain where we do our thinking can do it. Anyone who has had a queasy thought after seeing something distasteful can attest to this connection. The links between the vomiting center and the parts of the brain that regulate balance are especially close, which is why a ride in a roller coaster or a bumpy airplane can make you throw up. The vomiting center also is sensitive to mechanical pressure on it, so vomiting is a common symptom when people have increased pressure inside their brain.

The vomiting center also quickly responds to a whole host of things it detects in the bloodstream. Many medications have nausea and vomiting as a side effect. This is a particular problem with some of the drugs we use to treat cancer. We even have drugs we can give to provoke vomiting as their intended effect. Changes in the body’s hormones, such as occurs with pregnancy, can activate the center. The majority of woman will have at least some problems with nausea and vomiting when they are pregnant, especially during the early months.

For a parent with a sick child, the most important things that tickle the vomiting center are those that happen in the digestive tract, since many disorders of the stomach and intestines lead to vomiting. There are nerves located throughout the digestive tract, especially in the upper portions of it, which run back to the vomiting center. These even begin in the mouth, which is why a person who gags when the back of the throat is touched may quickly vomit. For some people, even brushing their teeth can bring this on if they are not careful.

For the stomach and small intestines, any inflammation there sends messages back up the neural network to the vomiting center. If the signals are strong enough, the person will vomit. For children, the most common cause of this is a viral infection, the stomach flu. Intestinal nerves are especially sensitive to stretching. This also applies to the nerves that control nausea and vomiting, so a digestive tract that is stretched full of air and food that is not going anywhere can do more than hurt; it is also primed for the vomiting reflex. We know this is so because, in such a situation, often the simple technique of slipping a tube down into the stagnant lake of stuff in the stomach and upper intestines and sucking it back out will relieve a person’s nausea and vomiting.

The vomiting act itself, though it happens quickly, is an intricate series of events. When the vomiting center sends out the go signal, the stomach muscles first relax, halting any further movement of its contents. The next stage is what is properly called retching, which is several sharp, jerky spasms of the muscles in the chest and of the diaphragm, the powerful muscle sheet that spans the floor of the chest and separates the heart and lungs from the stomach, intestines, and other organs in the abdomen. Part of the retching reflex is to close the vocal cords tightly together. Then comes the actual vomiting. The abdominal muscles squeeze the stomach, the esophagus opens, and whatever is in the stomach comes back out. The vocal cords stay shut, preventing any of the vomited material from getting into the lungs. This is an important protective reflex; when it does not function, stomach contents with all their acid can cause serious injury to the lungs.

We know a lot about what things trigger the vomiting center and how they do it. The particular molecular signals themselves are even known. This information has allowed researchers to fashion drugs that block these signals. These drugs are most effective for the vomiting caused by extremely powerful signals to the vomiting center, such as those that come from cancer treatment drugs. A drug called ondansetron (brand-named Zofran) is an example.

Most parents deal with vomiting children in the context of the stomach flu. For these children, whose vomiting is less severe, doctors generally do not recommend using any of the drugs that suppress the vomiting center. There are several good reasons for this recommendation. The anti-vomiting drugs work on the brain by blocking the action of several molecules that brain cells use to talk to one another, called neurotransmitters. The drugs target neurotransmitters that are particularly abundant in the vomiting center. But these neurotransmitters work elsewhere in the brain, too, and blocking them can cause unwanted side effects, especially in children. There are exceptions to everything in medicine, but since the vomiting from stomach flu is not severe and passes in a day or so, the risk of side effects from these medications generally outweighs the potential benefit of using them.

Is vomiting of any use, and does it help healing when your child is sick? Certainly it is helpful for the body to have a way to get unwanted and toxic material quickly out of the digestive system, and vomiting accomplishes that. Nausea seems a useful thing to have, too, as a way of notifying us to get ready because vomiting is likely to follow.

Until recently doctors deliberately provoked vomiting in children who had eaten something potentially dangerous, and we advised parents to keep ipecac, a drug that does this, handy for such an occasion. We no longer recommend this because the risk of all the retching and throwing up outweighs any benefit of bringing it on. For parents, it is logical to regard vomiting as a natural reflex that may be doing some good in spite of the brief misery it can cause a child. Because the drugs that either block or provoke vomiting can have significant side effects, in nearly all situations it is best to let nature decide when she is going to make use of the reflex.

What causes fever?

June 11, 2010  |  General  |  No Comments

Here is another excerpt from my upcoming book, How Your Child Heals. It’s about fever, from the chapter about symptoms and signs.

Fever means an abnormal elevation of body temperature. But what is abnormal? Most of us have heard or read that “normal” is 98.6 degrees Fahrenheit, which is 37 degrees centigrade. In fact, normal temperature varies throughout the day. It is as much as one degree lower in the morning than in the afternoon, and exertion of any kind raises it. Where you measure it also matters. Internal temperature, such as taken on a child with a rectal thermometer, is usually a degree or so higher than a simultaneous measurement taken in the mouth or under the arm pit.

There is also a range of what is normal for each individual — not all people are the same. So what is a fever in me may not be a fever in you. As a practical matter, most doctors stay clear of this controversy by choosing a number to label as fever that is high enough so this individual variability does not matter. Most choose a value of 100.4 degrees Fahrenheit, or 38 degrees centigrade, as the definition of fever. It is not a perfect answer, but it is a number that has stood the test of time in practice.

We maintain our normal body temperature in several ways. Chief among them is our blood circulation. Heat radiates from our body surface, so by directing blood toward or away from our skin we can unload or conserve heat. We can also control body temperature by sweating — evaporation of sweat cools us down. We know how important a mechanism this is because the rare person who cannot sweat, or who is taking a medicine that interferes with sweating, has trouble keeping his body temperature regulated when he gets sick. If a swing in blood flow inwards to raise temperature happens very fast, we respond by shivering. This is also why we shiver if we go outside without a coat in the winter; our bodies are redirecting blood flow from our skin to our core in order to maintain temperature.

All parents know that a common cause of fever in children is infection. A more precise way to think about it is that a common cause of fever is actually inflammation. Since in children infection is the most common cause of inflammation, we generally assume a child with a fever has an infection somewhere in her body unless we can prove otherwise.

Our brains have a kind of thermostat built into them. Like the thermostat in a house, it senses the temperature of the blood passing by it and uses a series of controlling valves in the blood circulation to fine-tune the temperature. Also like your house thermostat, it continues to sense the temperature, and adjust it as necessary, until it has reached the value for which the thermostat is set. Fever happens when the thermostat is reset, just as happens when you twist the dial on the wall for your furnace — the body reacts to bring itself to the new setting. What twists the knob on the brain’s thermostat to cause fever are substances in the blood.

These fever-inducing substances belong to a family of inflammatory molecules that are released from body cells. Mostly they come from a cell called a macrophage, but germs themselves can also release things that have the same effect. The sudden rises and falls a parent often sees in their child’s temperature when they have an infection reflect the usually brief time these substances are in the blood. Sustained fever for many hours can happen if these materials are steadily present.

Opinions vary among doctors about when fever needs treatment. Fever itself virtually never causes harm on its own. The only times it can do harm is when it gets very, very high — 106 degrees or more — for a sustained period. That only happens in highly unusual situations; ordinary childhood infections never get it that high. It is true fever can make a child uncomfortable, although children generally tolerate it much better than adults. For that reason alone many doctors advise treatment.

There is another reason to treat fever. Toddlers may experience brief convulsions – seizures — when their body temperature rises very fast. These so-called febrile seizures cause no harm to the brain itself, and often run in families, but fever treatment makes good sense for a child who has had them in the past.

We have two effective drugs to treat fever — acetaminophen (Tylenol) and ibuprofen (Motrin). Both work the same way: they reset the brain thermostat back down to a lower lever. Both only last a few of hours or so in their effect, which is why you will see your child’s fever go back up again when they wear off if there are still any of those fever-causing substances from the inflamed site still in the circulation.

Nitrous oxide (laughing gas) for children during procedures

May 22, 2010  |  General  |  No Comments

I’ve written before about how the current standard of care is to provide some sort of sedation drugs — by mouth or by injection — to relieve pain and anxiety when we have to do things to children that make them uncomfortable, such as sewing up lacerations or doing x-ray studies that require them to lay still for a prolonged period. Pediatric intensivists in particular have become very involved in providing this service for children. There’s even a new professional organization, the Society for Pediatric Sedation, that gathers together doctors and nurses involved in this practice. (I’m a member.)

We have a menu of medications to choose from, but finding the perfect sedative for children is sometimes difficult. All of them have potential issues, although we are used to dealing with these things. Recently there’s been a new agent on the sedation scene, although it’s been around for many years for other uses — nitrous oxide, aka “laughing gas.” It’s been used in the operating room for many decades as a supplement to more potent anesthetics, and outside the operating room in dental offices for well over a century. It has an outstanding safety profile. One of the pioneers in using nitrous oxide for sedating children for medical procedures is Dr. Judy Zier, of Minneapolis Children’s Hospital. Her program is so successful that, in one hospital where I often work, we plan to add it to our toolkit of sedation. I think it represents a real advance in what we can offer children.

Treatment of bronchiolitis

February 27, 2010  |  General  |  No Comments

Bronchiolitis is the leading cause of hospitalization for very young children in the USA. You’ll find various definitions of what bronchiolitis is, but a standard one is a viral illness that starts in the upper respiratory tract with runny nose, congestion, and cough. This is soon followed by symptoms in the lower respiratory tract — the lungs — such as rapid breathing, wheezing, and sometimes the need for extra oxygen. The culprit in half to three-quarters of cases is what we call respiratory syncytial virus, or RSV, but a variety of viruses can do it. Interestingly, 10-30% of children with bronchiolitis and RSV have another respiratory virus, too. Researchers aren’t sure if this combined infection contributes to how severe the symptoms are.

Any child can get bronchiolitis, but children who were born prematurely or who have some preexisting problem with their lungs are particularly susceptible to experiencing severe cases of it. But even otherwise normal children can get critically ill. I just cared for such a child, one who needed a week of a mechanical ventilator for it, and all pediatric intensivists have now and then had similar cases.

Because it’s so common, and because some of the symptoms of bronchiolitis resemble asthma, physicians for many years treated it with asthma drugs. Unfortunately, these drugs rarely help. But the urge to do something, anything, for this often frustrating illness is a strong one, and I still often see full-bore asthma treatment given for bronchiolitis. Indeed, in spite of multiple recommendations by panels of experts, more than a few American doctors seem reluctant to concede that little in the way of drug therapy helps. It’s hard-wired into our nature to treat things. The problem is that no drugs are risk-free, so we shouldn’t use them unless there is a reasonable chance they will do good.

What helps bronchiolitis? For a child at high risk of getting a severe case of RSV we can give a monthly shot of a drug called Synagis that can reduce the chances of getting RSV, or, if it happens, having a less severe case. For the rest, we use frequent suctioning of all the nasal mucus, oxygen if a child’s blood oxygen level shows it to be a bit low, and time. For now, that’s about it.

Sedation for children who need procedures — yes, of course

February 12, 2010  |  General  |  No Comments

When I started training in pediatrics, nearly 35 years ago, it was common practice when an infant or child needed something done that was going to be painful, anxiety-producing, or both, the child was often merely held (or tied) down. Looking back on it now, it reminds me of the 19th century, a time when somebody might just be given a stick to bite down on. I wonder how we could have been in the same place with children a century later.

To be fair, there were several reasons we did things that way. Chief among them was the notion — one we now know to be false — that children (infants in particular) did not feel pain in the same way as older persons. The other reason was that we simply didn’t have available many of the medications we have now to counteract pain and anxiety, and the few that we had had not been studied much in children.

Things are much different now. We have a menu of things we can use to prevent pain, ranging from numbing cream we can put on the skin to lessen (or even eliminate) the pain of a needle stick to powerful, short-acting anesthetic drugs we can use to put the child into a deep (and brief) slumber. We have reliable ways of greatly reducing or eliminating both pain and anxiety when a child needs medical procedures as varied as an MRI scan or some stitches in the scalp.

Most doctors who do these procedures are well aware of these things. But if you run across one who doesn’t seem to be, don’t be shy about speaking up and asking what can be done to make your child more comfortable.

Drug shortages — another common thing most folks don’t know about

October 21, 2009  |  General  |  No Comments

Last week there was a notice in my mailbox from the pharmacy telling me that an antibiotic intensivists use frequently, vancomycin, was in extremely short supply. We still have some, but we were instructed to watch carefully how we use it until the shortage abated. How long would that be? It shouldn’t be too long — just a couple of weeks. Actually this sort of thing happens all the time. Brief (usually), unanticipated shortages of drugs are common.

The causes of the shortages are typically some problem at the facilities that manufacture them, and often there are only a few of these. Sometimes the cause is a sudden huge spike in demand, such as we saw for the antibiotic ciprofloxacin (Cipro) a few years ago during the anthrax scare and are now seeing with oseltamivir (Tamiflu) with the current influenza outbreak, but usually the cause is just some glitch in the manufacture of the drugs. Sometimes only a single facility is making a drug. This is particularly the case if the drug is a cheap generic, one for which the manufacturer doesn’t stand to make much money. Further, there generally are no stockpiles in case of emergencies like this.

If you are interested in learning which drugs are currently in short supply (and why), the American Society of Health-System Pharmacists keeps an ongoing list here

Drug shortages — another common thing most folks don't know about

October 21, 2009  |  General  |  No Comments

Last week there was a notice in my mailbox from the pharmacy telling me that an antibiotic intensivists use frequently, vancomycin, was in extremely short supply. We still have some, but we were instructed to watch carefully how we use it until the shortage abated. How long would that be? It shouldn’t be too long — just a couple of weeks. Actually this sort of thing happens all the time. Brief (usually), unanticipated shortages of drugs are common.

The causes of the shortages are typically some problem at the facilities that manufacture them, and often there are only a few of these. Sometimes the cause is a sudden huge spike in demand, such as we saw for the antibiotic ciprofloxacin (Cipro) a few years ago during the anthrax scare and are now seeing with oseltamivir (Tamiflu) with the current influenza outbreak, but usually the cause is just some glitch in the manufacture of the drugs. Sometimes only a single facility is making a drug. This is particularly the case if the drug is a cheap generic, one for which the manufacturer doesn’t stand to make much money. Further, there generally are no stockpiles in case of emergencies like this.

If you are interested in learning which drugs are currently in short supply (and why), the American Society of Health-System Pharmacists keeps an ongoing list here

Teenage drinking and the PICU

March 9, 2009  |  General  |  2 Comments

Every PICU cares for teenagers who are injured in car accidents. Many times these adolescents have been drinking alcohol. We also see teens in whom alcohol has led to a variety of other injuries besides car accidents. So underage alcohol use is a PICU issue. What do we know about it?

You can find some statistical answers to the question here, courtesy of the United States Department of Health and Human Services. Overall, alcohol is the most commonly abused drug by teenagers, dwarfing all others, including tobacco. In fact, underage drinkers consume eleven percent of all the alcohol consumed in the United States, an astonishing statistic. Nearly half of high school children report drinking some amount of alcohol during the previous month, and half of those teenagers did so during a session of binge drinking, defined as five or more drinks on a single occasion. By the time they graduate, three-quarters of high school students have tried alcohol. Among even younger children, forty percent of eighth-graders have tried alcohol, and sixteen percent of them report drinking within the previous month.

Those are the cold, abstract statistics. But teen drinking is not just about statistics–it is about individual children and what happens to them. Overall, a child who starts drinking as a young teen is four times more likely to develop alcohol-related problems as an adult than is a person who does not use alcohol until becoming an adult. Such children are also more likely to abuse other drugs, develop school problems, or engage in early and risky sexual activity. All these things correlate with teen drinking; they are not necessarily caused by it. Even so, such ominous associations tell us we should be greatly concerned.

One of the most dangerous problems connected with teen drinking is drunk driving. It is common among teens–ten percent report having done so. An even larger number–one third of all teenagers–report having ridden in a car during the previous month driven by a teen who had been drinking. Motor vehicle accidents are the leading cause of death among teens, and many of those who die show evidence of recent drinking. Although alcohol impairs the reaction time and abilities of all drivers, inexperienced teen drivers are even more affected. All these dry statistics translate into the unique, individual tragedies of thousands of teens killed or injured.

What can a parent do about teen drinking? Does any intervention help? Talking to your children about alcohol before they find out about it on their own is not only commonsense advice, it actually works. For example, one survey showed that parental disapproval was a far more powerful deterrent than were legal restrictions to getting alcohol. Teenagers whose parents talk to them frankly about alcohol, including a firm expectation that underage drinking is not acceptable, are less likely to drink. Equally important, parents who themselves use alcohol need to set an example of responsible behavior, especially with regard to driving.

You can find more excellent discussions, answers, and comprehensive resources for parents here, part of the recent Surgeon General’s initiative to reduce underage drinking.