How can we treat pain?

In a previous post I wrote about what causes pain. In this one I’ll write a little about how we can treat it.

We have two main approaches for treating pain: we can do things that reduce the pain signals coming from the spot that hurts, or we can use medications that confuse the brain into thinking the pain is either not there or is not so bad.

There are several simple things we can do to reduce the pain signals coming up the nerve fibers. A simple one has been known to parents for eons — simple rubbing of a painful spot. Stimulating one set of nerve fibers, particularly the fast, insulated ones, affects how our brain processes sensations. Every parent knows how to do this, although you probably did not know why it works. When your child comes running to you after falling down and bonking her head, what do you do? Generally you rub it, and it really does feel better. This is not just from parental love. Stimulating the touch fibers in the same place where the pain is coming from causes them to intervene and dampen back the pain signal coming from the other fibers. The same thing happens when we rub any body part after we hit it on something.

Cooling the area with an ice pack is another way to reduce the pain signals coming up the nerve network. Yet another is to put a medicine that interferes with how the nerves work right on the painful spot. Examples of this approach include ear drops that can numb the ear drum for a child with an infection or numbing sprays and ointments for a child with sunburn. A dentist injecting a painkiller around a sore tooth is using a more powerful version of these same methods.

The other way to treat pain is to use medications that act directly on the nervous system to alter how the brain reacts to the signals coming up from the painful place. They convince the brain to downplay or even ignore the information. This is how both acetaminophen (Tylenol and many other brands) and ibuprofen (Motrin and many other brands) work. Ibuprofen also relieves pain in another way that acetaminophen does not; ibuprofen can work directly at the site, such as the inflamed finger or ear, to block the production of some of those substances that cause the inflammation. We also have an injectable medication related to ibuprofen, only more potent, called ketorolac (brand-named Toradol).

More severe pain, such as from a broken arm, calls for medications more powerful than Tylenol or Motrin. Members of the opiate family, also called narcotics, are the standard. There are many members of this family, which vary in how they are given, their appropriate dose, and some of their side-effects, but they all work in the same way: they go to the brain and the spinal cord and alter a person’s perception of the pain. They also can alter mood and a person’s level of awareness to things around them. A common oral narcotic used for children is codeine; a common injectable one is morphine.

Even though we give narcotic medications for severe pain, a fascinating thing about them is that they are not really foreign to the body at all. We have similar substances that occur naturally in our body, and presumably these natural narcotics, called endorphins, are performing some useful function inside us, most likely involving pain control. So when we give a child with more severe pain, such as a broken leg, a medication of this type we are really just reinforcing a normal pathway. The presence of these natural substances could explain why some persons, an Indian Yogi for example, can walk across a bed of hot coals without pain because he has learned how to alter his brain’s perception of what is painful.

Pain, uncomfortable as it is, does serve some useful purpose, and in that sense helps a child heal. Pain alerts us that something is wrong and tells us we should try to do something about it. If we cannot feel the pain, worse injury often results. A good example of this is what happens when a person lacks sensation in an arm or a leg. Because he cannot feel there, painful things, such as an ill-fitting shoe, can go unnoticed and lead to injury.

But pain can also interfere with healing. Mild or moderate pain does not seem to affect healing much, but more severe pain, if it persists, can interfere with it. This stems from the effects of what we call stress hormones, substances like adrenaline, which the body releases at times of stress. They are called “fight or flight” hormones because they probably helped our ancient ancestors deal with things like a wild animal attack. Although they can help in times of acute danger, prolonged high levels of these hormones, such as occurs with continuing severe pain, do inhibit proper healing. Researchers have studied this phenomenon in children who have had major surgery, and it is clear that using pain-killers does not just make the children feel better — it also makes them heal better.


Leave a Reply

Your email address will not be published. Required fields are marked *